Exam questions on discipline: Introduction to the theory of supersymmetry Part ($S_{\pi 0}$) No 1

- 1. Formulation of scattering theory in terms of representation theory
- 2. Type of scattering matrix
- 3. The discrete spectrum
- 4. The virial theorem
- 5. Same particles
- 6. Statistical physics
- 7. S-matrix
- 8. Continuous spectrum
- 9. The scattering operator in the continuous case
- 10. Representation theory
- 11. Analytic properties of the wave function
- 12. Spectral theory
- 13. The Green's function
- 14. Perturbation theory
- 15. Applications of spectral theory

Part (Блок) №2

- 1. Operator algebra.
- 2. The time Green's function
- 3. Translational representation for the solution of the wave equation in free space
- 4. The wave function in the semiclassical approximation
- 5. Translational representation for the solution of the wave equation in free space
- 6. Quantum oscillator under the influence of an external force
- 7. Parametric excitation of a quantum oscillator
- 8. The scattering matrix
- 9. Heisenberg representation
- 10. Canonical transformations
- 11. Generalization of the normalization
- 12. Quantum oscillator under the influence of an external force
- 13. Perturbation theory for quasistationary states
- 14. Wave function of a multichannel system
- 15. The motion of two particles in an external potential field

Part (Блок) №3

- 1. Section. Unitarity of the S matrix
- 2. Symmetry of the S matrix
- 3. S matrix and its relation to the R-matrix
- 4. Threshold phenomena.
- 5. Energy dependence of the scattering cross section near the threshold of reactions.
- 6. Generalization to the case of particles with spin
- 7. The Faddeev equations
- 8. General formulas for scattering cross sections
- 9. The motion of two particles in an external potential field
- 10. The formula for determining the amplitudes of various processes
- 11. Asymptotics of the wave function at large distances

- 12. Theory of weak interactions
- 13. Reactions with neutrino emission
 14. Quasienergy of a system subjected to periodic action
 15. Multiplication in the case of several channels